
MP1 available, due 8/31, 11:59p.
Exam 1: 9/6-9/9, https://edu.cs.illinois.edu/testcenter/

Announcements

Pointer variables and dynamic memory allocation:

Stack memory

loc name type value

Heap memory

Youtube: pointer binky c++

loc name type value

a40 p int *

int * p;

Fun and games with pointers: (warm-up)
int * p, q; What type is q?______________

int *p;

int x;

p = &x;

*p = 6;

cout << x; What is output?______________

cout << p; What is output?______________

Write a statement whose output is the value of x, using variable p: ___________

3

int *p, *q;

p = new int;

q = p;

*q = 8;

cout << *p; What is output?______________
q = new int;

*q = 9;

p = NULL; Do you like this?_____________

delete q;

q = NULL; Do you like this?_____________

Memory leak:

Deleting a null pointer:

Dereferencing a null pointer:

Fun and games with pointers:
int * p, * q;

p = new int;

q = p;

delete p;

… // some random stuff

cout << *q; Do you like this?_____________

Stack vs. Heap memory:
void fun() {

string s = “hello!”;

cout << s << endl;

}

int main() {

fun();

return 0;

}

void fun() {

string * s = new string;

*s = “hello?”;

cout << *s << endl;

delete s;

}

int main() {

fun();

return 0;

}

System allocates space for s and
takes care of freeing it when s goes
out of scope.

Data can be accessed directly, rather
than via a pointer.

Allocated memory must be deleted
programmatically.

Data must be accessed by a pointer.

Pointers and objects:
face a, b;

… // init b

a = b;

a.setName(“ann”);

b.getName();

face * c, * d;

… // init *d

c = d;

c->setName(“carlos”);

(*d).getName();

class face {

public:

void setName(string n);

string getName();

…

private:

string name;

PNG pic;

boolean done;

};

Arrays: static (stackic)

int x[5];
Stack memory

loc name type value

Arrays: dynamic (heap)

int * x;

int size = 3;

x = new int[size];

for(int i=0, i<size, i++)

x[i] = i + 3;

delete [] x;

loc name value

Stack memory

loc name value

Heap memory

