Announcements

MP3 available, due 9/30, 11:59p.
Exam2: 9/25-9/28

Stack array based implementation: (what if array fills?)

Analysis holds for array based implementations of Lists, Stacks, Queues,
Heaps...

General Idea: upon an insert
(push), if the array is full, create a
larger space and copy the data into it.

X‘X‘X‘X

Main question: what's the
‘ ‘ ‘ ‘ ‘ resizing scheme? We examine 2.



Stack array based implementation: (what if array fills?)

How does this scheme do on a sequence of n pushes?



Stack array based implementation: (what if array fills?)

How does this scheme do on a sequence of n pushes?



Summary:
Linked list based implementation of a stack:

Constant time push and pop.

Array based implementation of a stack:

time pop.

time push if capacity exists,

Cost over O(n) pushes is for an AVERAGE of
per push.

Why consider an array?



Queues:

M

Queue ADT:
enqueue

dequeue

ISEmpty




Queue—linked memory based implementation:

/\|8 /’\|3 /’\|6 /’\|4
template<class SIT>

eless Lueus | Which pointer is “entry” and which is “exit”?

public:

// ctors dtor

bool empty () const;

el enemens (conet ST & e ¢ What is running time of enqueue?

SIT dequeue() ;

private:

Struct queueNode { What is running time of dequeue?
SIT data;
queueNode * next;

}i

queueNode * entry;

queueNode * exit;

int size;

7




Queue array based implementation:

template<class SIT>

class Queue {

public:

Queue () :capacity(8),s1ze (0) {

items=new SIT[capacity];}

~Queue (); // etc.

bool empty () const;

.

o T 1l

volid enqueue (cor

SIT dequeue() ;

private:

int capacity;
int size;

SIT * items;

i

enqueue(3);
enqueue(8);
enqueue(4);
dequeue();
enqueue(7);
dequeue();
dequeue();
enqueue(2);
enqueue(1);
enqueue(3);
enqueue(d);
dequeue();

enqueue(9);



entry exit

Queue array based implementatiori: l
template<class SIT>
class Queue { enqueue(y);
public: .
enqueue(i);
Queue () ;
enqueue(s);
~Queue (); // etc.
bool empty () const; dequeueo;
void enqueue (const SIT & e); enqueue(h);
SIT dequeue () ; enqueue(a);
private:
int s

SIT * items;
int entry;
int exit;

// some other stuff..




