Announcements

MP5 available, due 11/1, 11:59p. EC due 10/25, 11:59p.
http://www.gmatica.com/DataStructures/Trees/AVL/AVLTree.html

Maintaining height upon a rotation:




AVL trees: rotations (identifying the need)

t3\t4\

if an insertion was in subtrees t3 or 4,
and if an imbalance is detected at
t, then a rotation
about t rebalances the tree.

We gauge this by noting that the
balance factor at t->right is



AVL trees: rotations (identifying the need)

t If an insertion was in subtrees t2 or t3,
and if an imbalance is detected at
t, then a
rotation about t rebalances the
tree.
We gauge this by noting that the

4 balance factor at t->right is
t2 \ t3 \




AVL trees:

struct treeNode {
T key;
int height;
treeNode * left;

treeNode * right;

Insert:

insert at proper place
check for imbalance
rotate if necessary

update height



AVL tree insertions:

template <class T>
vold AVLTree<T>::insert (const T & x, treeNode<T> * & t )
if( t == NULL ) t = new treeNode<T>( x, 0, NULL, NULL
else 1f( x < t->key ) {
insert ( x, t->left );
int balance = height (t->right)-height (t->left);
int leftBalance = height (t->left->right)-height (t->left->left);

{
) ;

14

if ( balance == -2 )
if( leftBalance == -1 )
rotate (t )’
else
rotate ( t )

}
else 1if( x > t->key ) {
insert( x, t->right );
int balance = height (t->right)-height (t->left);
int rightBalance = height (t->right->right)-height (t->right->left);
if( balance == )
1f( rightBalance == )

rotate (t )
else
rotate (t )

}
t->height=max (height (t->1left ), height (t->right))+ 1;




AVL tree removal:



AVL tree analysis:

Since running times for Insert, Remove and Find are O(h), we'll argue
that h = O(log n).

Defn of big-O:

Draw two pictures to help us in our reasoning:

A

>

« Putting an upper bound on the height for a tree of n nodes is the same as
putting a lower bound on the number of nodes in a tree of height h.



AVL tree analysis:

Putting an upper bound on the height for a tree of n nodes is the same as
putting a lower bound on the number of nodes in a tree of height h.

Define N(h):

Find a recurrence for N(h):

We simplify the recurrence:

Solve the recurrence: (guess a closed form)



