Announcements

MP5 av, due 11/1, 11:59p.

Imagine an AVL tree storing

How many records?
How deep is the AVL tree?

(@/\
How many disk seeks to find a re?\@
\ \ / N\
® ®

= >

B Tree of order m

12 | 18 | 27 | 52 | 68 | 63 | 77 | 89

Goal: Minimize the number of reads from disk

« Build a tree that uses 1 disk block per node
— Disk block is the fundamental unit of transfer

* Nodes will have more than 1 key
 Tree should be balanced and shallow

— In practice branching factors over 1000 often used

http://people.ksp.sk/~kuko/bak/big/

= >

Definition of a B-tree

B-tree of order m is an m-way tree

 For aninternal node, # keys = #children -1

 All leaves are on the same level

e All leaves hold no more than m-1 keys

e All non-root internal nodes have between [m/2] and m children
 Root can be a leaf or have between 2 and m children.

Keys in a node are ordered.

/.

17

Searching a B-tree

bool B-TREE-SEARCH (BtreeNode & x, T key) {

int 1 = 0;

while ((1 < x.numkeys) && (key > x.key[1]))
i++;

1f ((1 < x.numkeys) && (key == x.key[1]))
return true;

1f (x.leaf == true)
return false;

else/{

BtreeNode b=DISK-READ (x.child[1i]);
return B-TREE-SEARCH (b, key) ;

} 17

/

Analysis of B-Trees (order m)

The height of the B-tree determines the number of disk seeks possible
in a search for data.

We want to be able to say that the height of the structure and thus the
number of disk seeks is no more than :

As we saw in the case of AVL trees, finding an upper bound on the
height (given n) is the same as finding a lower bound on the number
of keys (given h).

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n).

Analysis of B-Trees (order m)

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n).

« The minimum number of nodes in each level of a B-tree of order m:
(For your convenience, lett =)

root
level 1
level 2

level h
 The total number of nodes is the sum of these:

» So, the least total number of keys is:

Analysis of B-Trees (order m)

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n). (continued...)

* S0, the least total number of keys is:

* rewrite as an inequality about n, the total number of keys:

» rewrite that as an inequality about h, the height of the tree (note that
this bounds the number of disk seeks):

Summary

B-Tree search:
O(m) time per node
O(log., n) height implies O(m log,,, n) total time
BUT:

Insert and Delete have similar stories.

What you should know:
Motivation
Definition
Search algorithm and analysis

What you should not know:
Insert and Delete

