
MP5 av, due 11/1, 11:59p.
Announcements
B-tree of order m is an m-way tree
• For an internal node, # keys = #children -1
• All leaves are on the same level
• All leaves hold no more than m-1 keys
• All non-root internal nodes have between ⎡ m/2 ⎤ and m children
• Root can be a leaf or have between 2 and m children.
• Keys in a node are ordered.

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

Analysis of B-Trees (order m)
The height of the B-tree determines the number of disk seeks possible

in a search for data.

We want to be able to say that the height of the structure and thus the
number of disk seeks is no more than ________.

As we saw in the case of AVL trees, finding an upper bound on the
height (given n) is the same as finding a lower bound on the number
of keys (given h).

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n).

Analysis of B-Trees (order m)
We seek a relationship between the height of the structure (h) and the

amount of data it contains (n).
• The minimum number of nodes in each level of a B-tree of order m:

(For your convenience, let t = ______.)
root
level 1
level 2
. . .
level h

• The total number of nodes is the sum of these:

• So, the least total number of keys is:

Analysis of B-Trees (order m)
We seek a relationship between the height of the structure (h) and the

amount of data it contains (n). (continued…)
• So, the least total number of keys is:

• rewrite as an inequality about n, the total number of keys:

• rewrite that as an inequality about h, the height of the tree (note that
this bounds the number of disk seeks):

BTree Summary
• Goal: Minimize the number of reads from disk
• Build a tree that uses 1 disk block per node

– Disk block is the fundamental unit of transfer

• Nodes will have more than 1 key
• Tree should be balanced and shallow

– In practice branching factors over 1000 often used

B-Tree search:
O(m) time per node
O(logm n) height implies O(m logm n) total time
BUT:

(Insert and Delete have similar stories.)

What you should know:
Motivation, Definition, Search algorithm and analysis

Hashing - using “hash tables” to implement _________
Suppose we have the following info…

…and we want to be able to retrieve a
name, given a locker number.

Locker
Number

Name

103 Jay Hathaway

92 Linda Stencel

330 Bonnie Cook

46 Rick Brown

124 Kim Petersen

… …

Now suppose our keys are not so nicely
described…

Course Number -> Schedule info

Color -> BMP

Vertex -> Set of incident edges

Flight number -> arrival information

URL -> html page

dice roll -> payoff amt

Some general vocabulary

A dictionary is a structure supporting the following:
void insert(kType & k, dType & d)
void remove(kType & k)
dType find(kType & k)

An associative array is a dictionary w a particular interface–
Overloads the [] operator for insert and find:

myDictionary[“Miguel”] = 22;
dType d = myDictionary[“Miguel”];

Hashing:
(defn) Keyspace – a (mathematical) description of the keys for a set of data.

Goal: use a function to map the keyspace into a small set of
integers.

What’s fuzzy about this goal?

Problem: Keyspaces are often large…

Basic Idea: we seek a mapping, h(k)

hash
function

A perfect hash function:

0
1
2
3
4
5
6
7

(Ann, black cat)
(Ben, HP)
(Cory, spy)

(David, bball player)
(Ellen, butterfly)

(Finn, cereal killer)
(Gus, ghost)

(Harmony, bee)

A contrived example:
these keys have a fabulous hash fn.

a. each key hashes to a different int
b. collection of keys hash to a seq of ints

