Announcements

MP5 av, due 11/1, 11:59p.

B-tree of order m is an m-way tree

e For an internal node, # keys = #children -1

 All leaves are on the same level

e All leaves hold no more than m-1 keys

e All non-root internal nodes have between [m/2] and m children
 Root can be a leaf or have between 2 and m children.

« Keys in a node are ordered.
17

/.

Analysis of B-Trees (order m)

The height of the B-tree determines the number of disk seeks possible
in a search for data.

We want to be able to say that the height of the structure and thus the
number of disk seeks is no more than :

As we saw in the case of AVL trees, finding an upper bound on the
height (given n) is the same as finding a lower bound on the number
of keys (given h).

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n).

Analysis of B-Trees (order m)

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n).

« The minimum number of nodes in each level of a B-tree of order m:
(For your convenience, lett =)

root
level 1
level 2

level h
 The total number of nodes is the sum of these:

» So, the least total number of keys is:

Analysis of B-Trees (order m)

We seek a relationship between the height of the structure (h) and the
amount of data it contains (n). (continued...)

* S0, the least total number of keys is:

* rewrite as an inequality about n, the total number of keys:

» rewrite that as an inequality about h, the height of the tree (note that
this bounds the number of disk seeks):

BTree Summary

« Goal: Minimize the number of reads from disk
« Build a tree that uses 1 disk block per node

— Disk block is the fundamental unit of transfer
* Nodes will have more than 1 key
* Tree should be balanced and shallow

— In practice branching factors over 1000 often used

B-Tree search:
O(m) time per node
O(log,, n) height implies O(m log,, n) total time
BUT:
(Insert and Delete have similar stories.)

What you should know:
Motivation, Definition, Search algorithm and analysis

Hashing - using “hash tables” to implement

Suppose we have the following info...

Locker Name
Number
103 Jay Hathaway
92 Linda Stencel
330 Bonnie Cook
46 Rick Brown
124 Kim Petersen

...and we want to be able to retrieve a
name, given a locker number.

Now suppose our keys are not so nicely
described...

Course Number -> Schedule info
Color -> BMP

Vertex -> Set of incident edges
Flight number -> arrival information
URL -> html page

dice roll -> payoff amt

Some general vocabulary

A dictionary is a structure supporting the following:
vold 1nsert (kType & k, dType & d)
volid remove (kType & k)
dType find (kType & k)

An associative array is a dictionary w a particular interface—
Overloads the [] operator for insert and find:
myDictionary[“Miguel”] = 22;
dType d = myDictionary[“Miguel”];

Hashing:

(defn) Keyspace — a (mathematical) description of the keys for a set of data.

Goal: use a function to map the keyspace into a small set of
integers.

What's fuzzy about this goal?

Problem: Keyspaces are often large...

Basic Idea: we seek a mapping, h(k)

hash
function

A perfect hash function:

(Ann, black cat)

(Ben, HP)

(Cory, spy)

(David, bball player) — —

(Ellen, butterfly)

(Finn, cereal killer)

(Gus, ghost)

N O[O~ WINDN|—~|O

Harmony, bee)

A contrived example:
these keys have a fabulous hash fn.
a. each key hashes to a different int
b. collection of keys hash to a seq of ints

