Today’'s announcements:
MP6 avallable due 11/15, 11 59p

: = _, -
M‘“mﬂt ‘/ m i .-f 'u-f .a.\‘!a:“' mm.r'
-'JM [

' . SR
- 2 ' ,‘;.;,;:_(,
\V =] e < VV /
am% \ as éf’ ‘] 1 | "- \'
I T ';‘
1] ", 2 ~

This |mage remlnds us of a] A 4, Whiéh IS One way we can implement
ADT , whose functions include and
, With running times

(min)Heap: buildHeap

template <class T>
void Heap<T>::buildHeap () {
for (int i=parent(size);i>0;i--)
heapifyDown (1)

VANEEVAN
FAYaY!

(min)Heap: buildHeap Thm: The running time of buildHeap on an
array of size nis

A :
/ \ Instead of focussing specifically on running
B E

time, we observe that the time is

/ \ / \ proportional to the sum of the heights of all
L D H p of the nodes, which we denote by S(h).
{vdSd o
S(0) =

Als|e|L|p|H |_Soln8(h)=

Proof of solution to the recurrence:

But running times are reported in terms of n, the number of nodes...

(min)Heap: heapSort

N

N\

/N
dodsd
AL+ =T [o] »[Immemmmi

Running time?

Why do we need another
sorting algorithm??

Remembering CS173...

Let R be an equivalence relation on the set of students in this room, where
(s,t)= R if s and t have the same favorite among {A, FB, TR, CC, PMC, }.

Notation from math:[JrR={x:xR__}

One big goal for us: Given s and t we want to determine if sRt.

A Disjoint Sets example:

Let R be an equivalence relation on the set of students in this room, where
(s,t) € Rif s and t have the same favorite among A, FB, TR, CC, PMC, }.

(D Conss

1. Find(4)
2. Find(4)==Find(8)

3. If ({(Find(7)==Find(2)) then Union(Find(7),Find(2))

Disjoint Sets ADT

We will implement a data structure in support of “Disjoint Sets”:
* Maintains a collection S = {s, s4, ... Sy} of disjoint sets.
« Each set has a representative member.
» Supports functions: void MakeSet(const T & k);
void Union(const T & k1, const T & k2);
T & Find(const T & k);

A first data structure for Disjoint Sets:

Qo @ G

Find:

Union:

A better data structure for Disjoint Sets: UpTrees
« if array value is -1, then we’ve found a root, o/w value is index of parent.

* X and y are in the same tree iff they are in the same set.
0 1 2 3
-1 1] -

-1

