Today’'s announcements:

MP7 available. Due 12/6, 11:59p. |
Exam5: 12/4-12/7, CBTF. Review Fri, 12/2, 7-9p, Siebel 1404
Final: 12/8on, CBTF. Review Sat, 12/3, 4-6p, Loomis 141

Graphs: Traversal - DFS

7N



DFS:

“visits” each vertex

classifies each edge as either “discovery” or “back”

=

Algorithm DFS(G)
Input: graph G

Output: labeling of the edges of G
as discovery edges and back edges

For all u in G.vertices()
setLabel(u, UNVISITED)
For all e in G.edges()
setLabel(e, UNEXPLORED)
For all v in G.vertices()
if getLabel(v) = UNVISITED
DFS(G,v)

Algorithm DFS(G,V)
Input: graph G and start vertex v

Output: labeling of the edges of G in the
connected component of v as discovery edges and
back edges

setLabel(v, VISITED)

For all w in G.adjacentVertices(v)

if getLabel(w) = UNVISITED
setLabel((v,w),DISCOVERY)
DFS(G,w)

else if getLabel((v,w)) = UNEXPLORED
setLabel(e,BACK)




Graphs: DFS example

©

BCDE

A C

BADE

A C

A C



Graphs: DFS Analysis

setting/getting labels

every vertex labeled twice

every edge is labeled twice
querying vertices

each vertex

total over algorithm

querying edges

TOTAL RUNNING TIME:



Muddy City... .




Minimum Spanning Tree Algorithms:
Input: connected, undirected graph G with unconstrained edge weights
*Output: a graph G’ with the following characteristics -
*G’ is a spanning subgraph of G
*G’ is connected and acyclic (a tree)

*G’ has minimal total weight among all such spanning trees -




Kruskal’'s Algorithm

(a,d)

(€,h)

(f.9)

(a,b)

(b,d)




Kruskal’'s Algorithm (1956)

w2 LY

e

1. Initialize graph T whose purpose is to be our output. Let it
consist of all n vertices and no edges.

2. Initialize a disjoint sets structure where each vertex is

represented by a set.

3. RemoveMin from PQ. If that edge connects 2 vertices from

different sets, add the edge to T and take Union of the vertices’ two
sets, otherwise do nothing. Repeat until edges are added to T.




Algorithm KruskalMST(G)

Kruskal's Algorithm - preanalysis | disjointSets forest;

for each vertex v in V' do
forest.makeSet(v);

5 15

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = 2;
12

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) # forest.find(u) then

Add edgeeto E
forest.smartUnion
(forest.find(v),forest.find(u))
return 7

Priority Sorted
Queue: Heap Array
To build
Each
removeMin




Kruskal’'s Algorithm - analysis

5 15

12

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do
forest. makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E =2;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) # forest.find(u) then
Add edgeeto E
forest.smartUnion

(forest.find(v),forest.find(u))

return 7
Priority
Queue: Total Running time:
Heap
Sorted
Array




