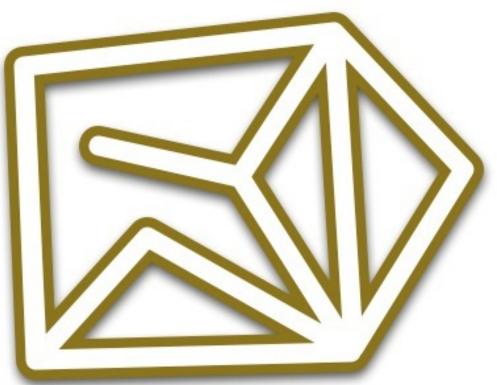
Today's announcements:

MP7 available. Due 12/6, 11:59p.

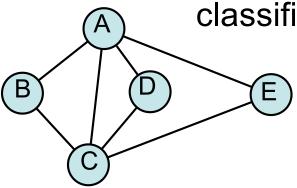
Exam5: 12/4-12/7, CBTF. Review Fri, 12/2, 7-9p, Siebel 1404

Final: 12/8on, CBTF. Review Sat, 12/3, 4-6p, Loomis 141

Graphs: Traversal - DFS



DFS: "visits" each vertex classifies each edge as either "discovery" or "back"



Algorithm DFS(G)

Input: graph G

Output: labeling of the edges of G as discovery edges and back edges

For all u in G.vertices()

setLabel(u, UNVISITED)

For all e in G.edges()

setLabel(e, UNEXPLORED)

For all v in G.vertices()

if getLabel(v) = UNVISITED

DFS(G,v)

```
Algorithm DFS(G,v)
```

Input: graph G and start vertex v

Output: labeling of the edges of G in the connected component of v as discovery edges and back edges

|setLabel(v, VISITED)

For all w in G.adjacentVertices(v)

if getLabel(w) = UNVISITED

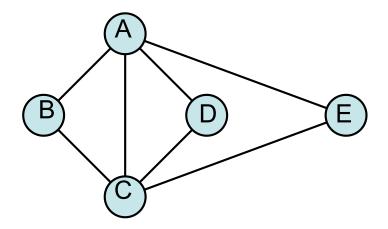
setLabel((v,w),DISCOVERY)

DFS(G,w)

else if getLabel((v,w)) = UNEXPLORED

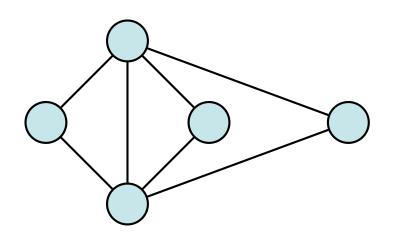
setLabel(e,BACK)

Graphs: DFS example



Α	BCDE
В	A C
С	BADE
D	A C
E	A C

Graphs: DFS Analysis



setting/getting labels

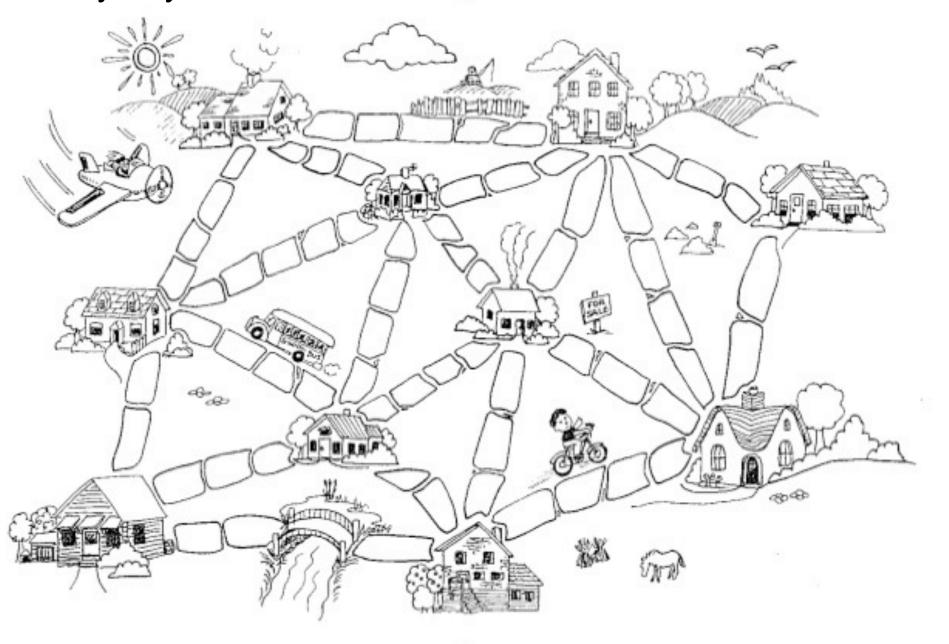
every vertex labeled twice

every edge is labeled twice

querying vertices
each vertex
total over algorithm
querying edges

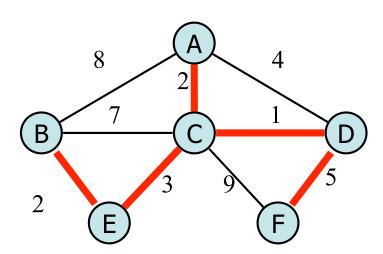
TOTAL RUNNING TIME:

Muddy City...

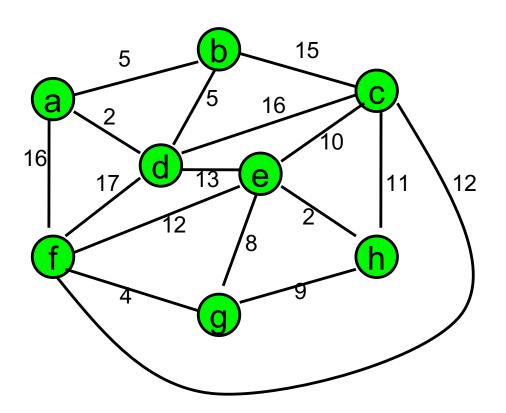


Minimum Spanning Tree Algorithms:

- •Input: connected, undirected graph G with unconstrained edge weights
- •Output: a graph G' with the following characteristics -
 - •G' is a spanning subgraph of G
 - •G' is connected and acyclic (a tree)
 - •G' has minimal total weight among all such spanning trees -

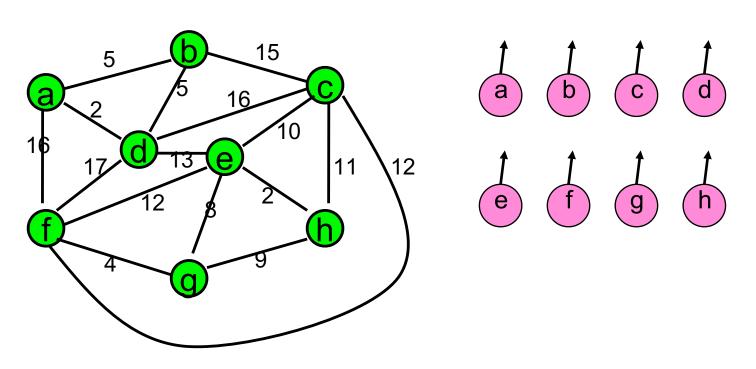


Kruskal's Algorithm



(a,d)
(e,h)
(f,g)
(a,b)
(b,d)
(g,e)
(g,h)
(e,c)
(c,h)
(e,f)
(f,c)
(d,e)
(b,c)
(c,d)
(a,f)
(d,f)

Kruskal's Algorithm (1956)



(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

(g,h)

(e,c)

(c,h)

(e,f)

(f,c)

(d,e)

(b,c)

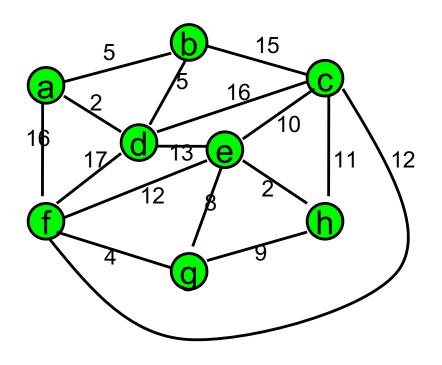
(c,d)

(a,f)

(d,f)

- 1. Initialize graph T whose purpose is to be our output. Let it consist of all n vertices and no edges.
- 2. Initialize a disjoint sets structure where each vertex is represented by a set.
- 3. RemoveMin from PQ. If that edge connects 2 vertices from different sets, add the edge to T and take Union of the vertices' two sets, otherwise do nothing. Repeat until _____ edges are added to T.

Kruskal's Algorithm - preanalysis

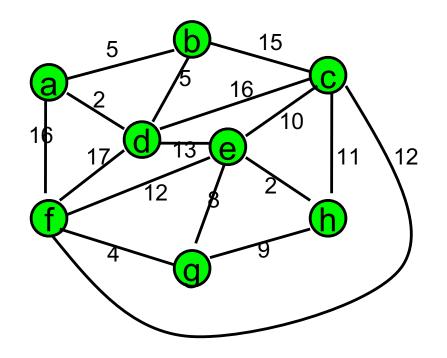


Priority Queue:	Неар	Sorted Array
To build		
Each removeMin		

Algorithm KruskalMST(G) disjointSets forest; for each vertex v in V do forest.makeSet(v); priorityQueue Q; Insert edges into **Q**, keyed by weights *graph* T = (V,E) with $E = \emptyset$; while *T* has fewer than *n*-1 edges do edge e = Q.removeMin()Let u, v be the endpoints of e if $forest.find(v) \neq forest.find(u)$ then Add edge e to Eforest.smartUnion (forest.find(v),forest.find(u))

return T

Kruskal's Algorithm - analysis



Algorithm *KruskalMST(G)*

```
disjointSets forest;
for each vertex v in V do
  forest.makeSet(v);
```

priorityQueue Q; Insert edges into Q, keyed by weights

```
graph T = (V,E) with E = \emptyset;
```

while T has fewer than n-1 edges do
 edge e = Q.removeMin()
 Let u, v be the endpoints of e
 if forest.find(v) ≠ forest.find(u) then
 Add edge e to E
 forest.smartUnion
 (forest.find(v),forest.find(u))

return T

Priority Queue:	Total Running time:
Heap	
Sorted Array	