Today’'s announcements:

MP7 available. Due 12/6, 11:59p.
Examb5: 12/4-12/7, CBTF. Final: 12/8on, CBTF.

Minimum Spanning Tree Algorithms:
*Input: connected, undirected graph G with unconstrained edge weights
*QOutput: a graph G’ with the following characteristics -
*G’ is a spanning subgraph of G
*G’ is connected and acyclic (a tree)

*G’ has minimal total weight among all such spanning trees -

Kruskal’'s Algorithm

(a,d)

(€,h)

(f.9)

(a,b)

(b,d)

Kruskal’'s Algorithm (1956)

w2 LY

e

1. Initialize graph T whose purpose is to be our output. Let it
consist of all n vertices and no edges.

2. Initialize a disjoint sets structure where each vertex is

represented by a set.

3. RemoveMin from PQ. If that edge connects 2 vertices from

different sets, add the edge to T and take Union of the vertices’ two
sets, otherwise do nothing. Repeat until edges are added to T.

Algorithm KruskalMST(G)

Kruskal's Algorithm - preanalysis | disjointSets forest;

for each vertex v in V' do
forest.makeSet(v);

5 15

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = 2;
12

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) # forest.find(u) then

Add edgeeto E
forest.smartUnion
(forest.find(v),forest.find(u))
return 7

Priority Sorted
Queue: Heap Array
To build
Each
removeMin

Kruskal’'s Algorithm - analysis

5 15

12

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do
forest. makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E =2;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) # forest.find(u) then
Add edgeeto E
forest.smartUnion

(forest.find(v),forest.find(u))

return 7
Priority
Queue: Total Running time:
Heap
Sorted
Array

Prim’s algorithms (1957) is
based on the Partition
Property:

Consider a partition of the vertices
of G into subsets U and V.

Let e be an edge of minimum
weight across the partition.

Then e is part of some minimum
spanning tree.

Proof:
See cs374

MST - minimum total weight spanning tree

Theorem suggests an algorithm...

Example of Prim’s algorithm -

Initialize structure:

1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] =0

3. Initialize priority (min) queue

4. Initialize set of labeled vertices to 2.

Example of Prim’s algorithm -

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] =0

3. Initialize priority (min) queue

4,

Initialize set of labeled vertices to 2.

Repeat these steps n times:

Find & remove minimum d[] unlabelled
vertex: v

Label vertex v

For all unlabelled neighbors w of v,
If cost(v,w) < d[w]
d[w] = cost(v,w)

plw] =v

Prim’s Algorithm (undirected graph with unconstrained edge weights).

Initialize structure: adj mtx adj list

For all v, d[v] = “infinity”, p[v] = null

Initialize source: d[s] =0 heap| O(Mm2+mlogn) | O(nlogn+mlogn)

1.
2.
3. Initialize priority (min) queue
4,

Initialize set of labeled vertices to 2.
Unsorted

array

Repeat these steps n times:

 Remove minimum d[] unlabeled vertex: v

« Label vertex v (set a flag) Which is best?

. For all unlabeled neighbors w of v, Depends on denslty of the graph:

If cost(v,w) < d[w] Sparse
d[W] = COSt(V,W) Dense

pw]=v

