
MP7 available. Due 12/6, 11:59p.
Exam5: 12/4-12/7, CBTF. Final: 12/8on, CBTF.

Today’s announcements:

Minimum Spanning Tree Algorithms:
•Input: connected, undirected graph G with unconstrained edge weights

•Output: a graph G’ with the following characteristics -

•G’ is a spanning subgraph of G

•G’ is connected and acyclic (a tree)

•G’ has minimal total weight among all such spanning trees -

CB

A

E

D

F

48

7 1

2 5

2

3 9

Kruskal’s Algorithm

a
b

c

f

g

h

ed

5 15

5 16
10

11 12

9

2
8

12

1317

2

16

4

(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

(g,h)

(e,c)

(c,h)

(e,f)

(f,c)

(d,e)

(b,c)

(c,d)

(a,f)

(d,f)

Kruskal’s Algorithm (1956)

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

(g,h)

(e,c)

(c,h)

(e,f)

(f,c)

(d,e)

(b,c)

(c,d)

(a,f)

(d,f)

1. Initialize graph T whose purpose is to be our output. Let it
consist of all n vertices and no edges.

2. Initialize a disjoint sets structure where each vertex is
represented by a set.

3. RemoveMin from PQ. If that edge connects 2 vertices from
different sets, add the edge to T and take Union of the vertices’ two
sets, otherwise do nothing. Repeat until ______ edges are added to T.

a b c d

e f g h

Kruskal’s Algorithm - preanalysis

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority
Queue: Heap

Sorted
Array

To build
Each

removeMin

Kruskal’s Algorithm - analysis

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority
Queue: Total Running time:

Heap
Sorted
Array

Prim’s algorithms (1957) is
based on the Partition
Property:

Consider a partition of the vertices
of G into subsets U and V.

Let e be an edge of minimum
weight across the partition.

Then e is part of some minimum
spanning tree.

Proof:
See cs374

U V

6
4

2 8
5

7

3

9

8

e

7
4

2 8
5

7

3

9

8 e

f

U V

MST - minimum total weight spanning tree
Theorem suggests an algorithm...

5

34
5

4
4

4

4

4

4
3 3

3

3

3

3

2

2

2

2

Example of Prim’s algorithm -

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Example of Prim’s algorithm -

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Find & remove minimum d[] unlabelled

vertex: v

• Label vertex v

• For all unlabelled neighbors w of v,
If cost(v,w) < d[w]

d[w] = cost(v,w)
p[w] = v

Prim’s Algorithm (undirected graph with unconstrained edge weights):

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Remove minimum d[] unlabeled vertex: v
• Label vertex v (set a flag)

• For all unlabeled neighbors w of v,
If cost(v,w) < d[w]

d[w] = cost(v,w)
p[w] = v

Which is best?
Depends on density of the graph:

Sparse
Dense

adj mtx adj list

heap O(n2 + m log n) O(n log n + m log n)

Unsorted
array O(n2) O(n2)

