
MP7 available. Due 12/6, 11:59p. 
Exam5: 12/4-12/7, CBTF. Final: 12/8on, CBTF. 

Today’s announcements:

Minimum Spanning Tree Algorithms:
•Input:  connected, undirected graph G with unconstrained edge weights

•Output:  a graph G’ with the following characteristics -

•G’ is a spanning subgraph of G

•G’ is connected and acyclic (a tree)

•G’ has minimal total weight among all such spanning trees -

_________________________
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Kruskal’s Algorithm
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Kruskal’s Algorithm (1956)
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1. Initialize graph T whose purpose is to be our output.  Let it 
consist of all n vertices and no edges.

2.  Initialize a disjoint sets structure where each vertex is 
represented by a set.

3.  RemoveMin from PQ.  If that edge connects 2 vertices from 
different sets, add the edge to T and take Union of the vertices’ two 
sets, otherwise do nothing.  Repeat until ______ edges are added to T.
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Kruskal’s Algorithm - preanalysis
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Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority 
Queue: Heap

Sorted 
Array

To build
Each 

removeMin



Kruskal’s Algorithm - analysis
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Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority 
Queue: Total Running time:

Heap
Sorted 
Array



Prim’s algorithms (1957) is 
based on the Partition 
Property:

Consider a partition of the vertices 
of G into subsets U and V.

Let e be an edge of minimum 
weight across the partition.

Then e is part of some minimum 
spanning tree.

Proof:
See cs374
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MST - minimum total weight spanning tree
Theorem suggests an algorithm...
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Example of Prim’s algorithm -
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Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.



Example of Prim’s algorithm -
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Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Find & remove minimum d[] unlabelled 

vertex: v

• Label vertex v

• For all unlabelled neighbors w of v, 
If cost(v,w) < d[w]

d[w] = cost(v,w) 
p[w] = v



Prim’s Algorithm (undirected graph with unconstrained edge weights):

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Remove minimum d[] unlabeled vertex: v
• Label vertex v (set a flag)

• For all unlabeled neighbors w of v, 
If cost(v,w) < d[w]

d[w] = cost(v,w) 
p[w] = v

Which is best?
Depends on density of the graph:

Sparse
Dense

adj mtx adj list

heap O(n2 + m log n) O(n log n + m log n)

Unsorted 
array O(n2) O(n2)


